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MULTIPLE CAPTURE IN PONTRYAGIN'S EXAMPLE 
WITH PHASE CONSTRAINTS " 

N. N. P E T R O V  

Izhevsk 

(Rece&ed 20 February 1996) 

Sufficient conditions for m-fold capture in Pontryagin's example [1] with many participants and with phase constraints on the 
state of the evader for identical dynamic and inertia possibilities of the players are derived. The phase constraint boundary here 
is not the "death line" fo:r the evader. © 1998 Elsevier Science Ltd. All rights reserved. 

This paper  is related to the investigations described in [2-11]. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  

In the space R k (k I> 2), we consider  an n + 1-person differential game F: n pursuers  P1 . . . .  , Pn and 
an evader  E with laws of  mot ion  

x~ l) +alx~  t-I) + ... + a l x  i = u i, u i ~ V (1.1) 

y(t) +a ly ( l - I )  + . . . + a t y = v  ' u ~ V (1.2) 

H e r e x i ,  y ,  ui, v ~ R k. a l  . . . . .  at E ~1 and V i s a  convex compact  set o f  R k. The  initial condi t ions  at t = 
0 are 

x}a)(O)=x°ia ,  y ( a ) ( O ) f y °  a, Ct=O ..... 1 - 1  (1.3) 

where  x°0 - yO ~ Mi for  all i and M i are convex compact  sets o f  R k. Here  and everywhere below 
i --- 1 . . . .  , n. It  is also assumed that the evader  E does no t  leave the convex set 

D = { y :  y E R ~ , ( p j , y ) < ~ l j . j ,  j = l  ..... r} 

where  P l  . . . . .  Pr are unit  vectors  o f  R ~ and gz . . . .  , ~ are real numbers  such that  Int  D ~ 0. 

Def in i t ion  1. We shall say that  m-fold capture  occurs in the game F if there are the following: a 
t ime T > 0 and measurable  functions ui(t) ui(t ' o = xia,  y°a, ~( ' ) )  E V and for any measurable  funct ion 
~(t) ,  ~ ( t )  E V, y ( t )  E F,  t E [0 7] there  are times Xl . . . . .  Xm E [0, 7] and pairwise different  indices 
i I . . . . .  i m E {1 . . . .  , n} such tha tx ia (xa)  - y ( x a )  ~ Mia for  all a = 1 . . . . .  m. 

It is assumed that  n t> m. 

2. A U X I L I A R Y  A S S E R T I O N S  

L e m m a  1. Suppose  the funct ion 

g( t )  = i exp(Zjt)Pj (t) + t e x p ( l ~ J ) ( Q a ( t ) c o s v a t  + P~ (t)sin va t )  
j=l  ct=l 

(~j, l . ta,Va E RI; kl < k2 < "" < ks, P'I ~ ~t2 ~ ... ~ ~tq) 

where  ~ are pairwise different  and Pi, Qa, Ra are polynomials,  is such that  g(t) ~> 0 for  all t ~> 0 and 
g(t)  ~ 0.. 
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T h e n  

1. I.ta ~ £s; 
2. It~tq = ~'s, then deg Qp(t) <- degPs(t) ,  deg R.(t) ~< deg Ps(t), for allp ~ I = {p: ~ = ~s}. 

• f 
Instead of systems (1.1) and (1•2) we wall consider the system 

z } l ) + a l z } l - I ) + . . . + a l Z  i = u i - v ,  U i, P E V  

zi (0) = zoo o o z} t-l)(O) o o _ yO_, -~ XiO -- YO, " ' ,  = Zil-I -- Xil-I 

(2.1) 

We will denote by ~pp(t) (p = 0, 1 , . . . ,  l - 1) solutions of the equation 

w (I) + al  w( I - I )  + . . .  + a l w  "~ 0 

with initial conditions 

w(O) = O ..... wft'q)(O) ffi O, wfP)(O) = 1, wfP+l)(O) = O . . . . .  W ( I - I ) ( o )  = O 

Assumpt ion 1. All the roots of the characteristic equation 

kt + al2~t-I +. . .  +a t •O (2.2) 

have non-positive real parts. 

Assumption 2. The inequality (p/_l(t) ~> 0 holds for all t t> 0. 
Note that Assumption 2 is satisfied if Eq. (2.2) has only real roots. 
Assumption 2 and Lemma 1 imply that Eq. (2•2) has at least one real root• Let El, • • • , ks 

(ka < , • • •, < ~s) denote the real roots, Ix i +_- iv 1 . . . . .  IXq + iVq (~1 ~< ~2 ~< • • • ~< ~ q )  the complex 
roots of Eq. (2.2), ks the multiplicity of )~s and ma the multiplicity of the root lxa --- iva. By the 
Assumption 2, lXq ~< )~s. Further, let 

~;(t) = ~o(t)Z°o + ~(t)z ° +... ~t-~(t)z°-~ 

rl(t) ffi qlo(t)Yo 0 + ~01 (t)y° ... qll_ 1 (t)y°_! 

Then q)/_l(t), ~(t), rl(t ) can be represented in the form 

¢#t-I (t) = ~, exp(~,jt)Pt_l](t ) + ~ exp( l l~ t ) (Qt_ la( t )cosv j  + Rt_la(t)sin vat) 
jffil  aff i l  

~ , ( t ) -  ]~ exp(~.jt)PJ(t)+ ~ exp(btat)(Q]a(t)cosvat + R;a(t)sin vat ) 
j=l af t , !  

l l ( t )= ~ exp(kjt)Pj2(t)+ ~ exp(~tat)(Q2a(t)cosvat + P,~(t)sinvat) 
l ff i l  a = l  

We will assume that ~/(t) ~ M i for all i and t > 0, for if ~.,a(t) ~ Ma for some a and t, the pursuer Pa will 
catch the evader E, assuming ua(t) = a)(t), and we can then consider the problem of (m - 1)-fold capture. 
We also assume that e~i(t) ~ 0 for all i, for otherwise the pursuers initially endeavour to satisfy the 
given condition. 

Let ~ denote the degree of the polynomialP~i(t), To the degree of the polynomialP~s(t) and y the degree 
of the polynomial P,t-l(t). It can be assumed that T/= yfor  all i, for otherwise pursuers Pi initially strive 
to satisfy the given condition• 

L e m m a  2. 7 = ks - 1. 

Assumption 3. ma < ks for all a e I = {a I ~ = 7~}• 

L e m m a  3. Suppose that Assumptions 1-3 are satisfied• Then for any T > 0, there are a constant 
c > 0 and a function R(t),  limt_... R(t)  = 0 such that 
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T 

{Pt-! (t - x)dx = c exp(~,st)t ~ (1 + R(t)) (t > T) 
0 

L e m m a  4. Assumptions 1-3 are satisfied. 
1. Let L~ < 0. Then there is a constant a > 0 for which 

l 

lim ~ tpt_ I (t - x)dx = a 
t'->*° T 

VT>O 

2. Let ~,s = 0. Then for any T > 0 there are the following: a constant Cl > 0 and a function Rl(t), 
limt_. ** Rl( t)  = 0 for which 

T 

{Pl-I (t - x)dx = q t  ~ (1 + R m (t)) 
0 

We now define the function L: c o m p ( ~ )  x V ~ R 

X(A, u ) ffi suplX I ~, ;~ 0,-;~A ~ (V - v  ) ~ 0} 

Here comp(R k) is the space of convex compact subsets of R k with a Hausdorff metric. Suppose further 
that 

z ° = l i m ~ / f ,  l = { n + l  ..... n+r}  
t--}*o 

d :-" max { l l  u II, u • V} 

b = : l f - l / a '  if X s < 0  _,{Z 9, - M i ,  
0, if Z,~=0' M ~ -  zO 

f~ := {{i~ ..... ira} : {i~ ..... ira}c{1 ..... n}, i! ..... i m 

Lj(v ) = (pj_n,u )+bBj_n,  j • I, ~l(t) = exp(-Xst)~i( t  ) 

8 = inf max{max min~,a(Aa,u ), maxXi(v )} 
u eV A e f l  o ~ A  jGI  " 

8 o = inf max{max rain ~,a(M~,u ), max ~,i(u )} 
u ~V AEf'I Ix~A j ~ i  " 

V l ={u :u  • V ,  maxmin )~a (M~ ,u )=O } 
A ~ f l  a e A  

if ~ . ,=0,  k , = l  

otherwise 

differ pairwise} 

Lemma 5. Let A 1 . . . . .  A n be convex compact sets such that 0 ~ h i ,  8 > 0 and let the functions 7q.(Ai, 
~) be continuous at all points (Ai, ~), where ~(Ai, a~) > 0. Then for any continuous multivalued mappings 
Bi(t ) : [0, oo) ~ comp(D~ '~) for which lirnt __}**Bi(t ) = A i (ill a Hausdorff metric), there is a time To for which 

R 
8(0 = inf max{max min ~,a(Ba(t),u ), max ky(V )} ~> ~ Vt > To 

u e V  A E ~  cx~A j ~ l  2 

Assumption 4. The condition 0 $ M~ holds and the functions k/ are continuous at all points 
(M~, a~) for which ~(M~, ~) > O. 

3. S U F F I C I E N T  C O N D I T I O N S  F O R  C A P T U R E  

L e m m a  6. Suppose that for some game F Assumptions 1-4 hold and ~,s < 0, 0 • D, 80 > 0, r = 1. 
Then there is a time To > 0 such that for any admissible function a~(.), there is a set A • f~ for which 

1 - exp(-~,sT o) T~ qJt-I (To - X)Xa ( ~  (To), u ('c))dx <~ 0 V a  • A 
0 

Proof. Let Tbe any number and let ~(t), t ~ [0, T] be an admissible function (that is, y(t) ~ D for all t e [0, 7]). 
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We will define the continuous functions 

t 
h i ( t )  = 1 - e x p ( - ~ , s t )  ~ opt_ i ( t -  "t)~, i ( ~  (T), v ('O)d% hi (0) = 1 

o 
T 

E max ha(T) ~ Cn m -exp(-ZsT)~ 9l-I ( T -  x)max min ~.a(~/(T), v (x))dx 
Aefl aEA 0 Aef~ aeA 

Since {~(T)/T Y ~ z~ as t ~ ~, by virtue of Lemma 5 and Assumption 4, there is a time/'1 for which 

l^....^ ,, - T  

(3.1) 

Since y(t) ~ D we have (Pl, y(t)) ~< Stl. The last inequality is equivalent to the following 
t 

q~l-I ( t  - X)(pl  ,O ( x ) ) d x  ~ St(t) ffi - ( P l  , 'q( t ) )  + Stl - 7 tPI-I (t  - x ) (p l  ,v  ( x ) ) d x  
7i 0 

We will define the two sets Al(t), Az(t) C [Tb t], (t > 7"1) as follows: 

a1(t)={xl x¢[Tt,t], (pl,v(x))<8-bSt I =81} 

A2(t)f{xl  x~[Ti,t], (pl,v(x))~81} 

Then 

G I+G 2 = f ( t ) ,  -dG I+81G 2 ~ S t ( t )  

where 

t 
GI,2 = ~ qJl-I (t-'Od'L f(t)  = ~ COl_ 1 ( t -  x)d'c 

Ata(t) 

It follows from the last two relations that 

GI ~ (S i f ( t ) -  B(t)) I (d+8! )  

Assuming that T > T1, from inequality (3.1) we obtain 

E maxha(T)~C~ n-exp(-~.sT ) ] q~/_l(T-.~)max minka(~l~(T),v(x))d~ 
Aef~ aGA A i (T) A~fl a e A  

Since Xi(~li(T), v)T ~ = X/(~li(T)/T Y, v) 

(3.2) 

(3.3) 

m a x  m i n ~ . a ( ~ i ~ ( T ) , u ( x ) ) = ~ m a x r m n ~ a / - - - - - - - ~  - - ,  v(x) ;B VX~At(T) 
Aef laEA T Y AeQaGA ~ T T 

(3.4) 

Thus from (3.3), taking account of (3.4) and (3.2), we obtain 

exp(-~,sT)8[Sif(r)-  St(T)] min h a ( r ) ~  c~  - = g ( r )  
^Gt'l a~A T¥ (d  +81 ) 

From the relation 

exp(_~,sT).q(T) p2(T ) s-i P?(T) 
r v  = rV + 5'. exp(X~ - ~'s) ~ + 

j=l 

+ ~= e x p ( ( B a - ~ ' s ) r ) ( - ~ - c o s v a T + ~ s i n v a T )  

the condition To <~ Tand Assumption 3, we see that the quantity II exp (-~r) 'q(r) / /Zll  is bounded in [T1, ~). Thus 
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the quantity II exp (-7%T)(px, rl(T))/TVll will also be bounded in [/'1, ~0). It follows from Lemma 3 that the quantity 

exp(-X~T) 
- ~  " 'o ~ t_ l (T-x )dx  

is bounded in [T1, ~,). From Lemma 4 it follows that 

( 8 1 f ( t ) - B i ) = ( 8 - b B i ) f ( t ) - B i  --)a5 as t--)** 

Thus lim g(T) = --~ as t --> 00. This means that there is a time To which satisfies the condition of the iemma. 

Let  

V(t)={vt ( . ) :  v( '~)~ V, y ( ' Q c D ,  '¢¢[0,t]}, 

{ ' } r ( z  o) = rain t :t ~ 0, inf max min I exp(-~'st)~t-I (t - x)~,. ( ~  (t), u (x))dx ~ 1 
vt(.)GV(t) A ~  a e A  0 

Theorem 1. Suppose that for the game F Assumptions 1--4 are satisfied, ~.s < 0, 80 > 0, 0 ~ D, Mi = 
{0} and at least one ,of the following two conditions holds 

(a) r = I; (b) nfllLmax((pj,v)+b~j)>O 
v ecovi  j 

Then the game F involves m-fold capture. 

Proof. Suppose condition a holds. By Lemma 6 we have T = T(zo) < 0.. Le t  ~('0 (0 <~ x <- T = T(zo)) 
be any admissible control of  the evader E. There is a t ime/ '1 e (0, T] which is a root of the function 

h(t) = 1 - m a x  rain Ha(t)  
A~~ aEA 

t 

(Ha(t) = exp(-~,T) ~ %_l(T- x)~.tt(~ (T), u (x))ah:) 
0 

and also a set A0 e £! such that 1 - Ha(T1) ~< 0 for all a e A0. Thus, there are times t a <~ 71, a ~ A 0 
such that 

1 -  Ha( ta) - -  0 

For i ~ A0 we denote times for which Eq. (3.5) holds and t i ~ T 1 by t i. 
We will fix the conlLrols of pursuers Pi, putting 

(3.5) 

u i (t) = v (t) - Zi (~I (T), v (t))~] (r), t e [0, min{ti, T l }1 

ui(t)fu(t), t ~(nfin{ti,Tl},T] 

Then for all o~ ~ &j 
T 

exp(-~.,T)za (T) = ~l  (T) + exp(-~.sT) J {Pt-I ( T -  x)(uct (x) - v  (x))dx = 
0 

From (3.5) we find that exp(-~.sT)za(T ) ffi 0 for all a ~ Ao. It follows that z~(T) = 0 for all o~ ~ Ao, 
and the theorem is proved in the case when r = 1. 

Now suppose that condition b of the theorem is satisfied. Then by the theorem of  Bohnenblust et al. 
[12] there are numbers ~ >~ 0, T1 + • • • + Yr = 1 such that 

inf ~ T j ( (p j ,  u ) + b p j ) > O  
v G c°VI jffil 
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Put t ingp = TiP1 + • • • + Tdgr, t x = TIIXl + • • • + Trgr D1 = {3' :Y ~ R k, (P,Y) ~< IX}, we have 

inf max~max min k,,(z°, v) ,  ( p , v ) + b i x } > O  
v ~V [ AG~ cteA 

Thus, the problem of m-fold capture with phase constraints D1 is solvable. Since D C D1, the original 
problem on m-fold capture will also be solvable. This proves the theorem. 

Corollary. Suppose that for the game F Assumptions 1-3 hold, ks < O, V = DI(0), I~ = 0, j  = 1 , . . . ,  
r, n >-- m + k - l and 

O e l n t  [7 co I [J z°,Pl ..... P,} (3.6) 
A(n-m+t) [leA(n-re+l) 

Then m-fold capture occurs in the game F. 

L e m m a  7. Suppose that for the game F Assumptions 1-4 are satisfied, ks = 0, 50 > 0, r = 1. 
Then there is a time To such that, for each admissible function a)(t), there is a set A ~ f~ for 
which 

1- q~t_t(ro-g)ka(~a(To)-Ma, v(x))dx~O VaeA 
0 

The proof  is similar to that of Lemma 6. 

Theorem 2. Suppose that for the game F Assumptions 1-4 hold, ks = 0, 50 > 0, and at least one of 
the following two conditions holds 

(a) r = 1; (b) ntilL max(p j ,  o ) > 0 
tt E¢o~ / 

Then m-fold capture occurs in the game F. 
The proof  is similar to that of Theorem 1. 

Corollary. Suppose that for the game r Assumptions 1-3 hold, ks = 0, Mi = {0}, V = DI(0), n I> 
k + m - 1 and either condition (3.6) holds or D is a polytope. 

Then in the game F m-fold capture occurs. 

4. E X A M P L E S  

1. The laws of motion of the pursuers P; and the evader E have the form 

JQ+aximui, xi(O)-~x O, uiEV, a > O  

y+ayfv, y(O)fyO O, vGV 

Let Mi = {0}, 0 e D. In that case 

Let 

z°=x°-y °, b=-a, cPo(t)fexp(-at ) 

k , ( z  ° ,  u ) = ( (z  ° , u ) + [ ( z  ° ,  u )2 +ll z ° II 2 ( l  -II u 112)],~)/II z ° II ~ 

~=n~nmax~maxnfinki(z°'u)'v [Ae~ i~A .max. 

Assertion 1. Let 8 > 0 and suppose that at least one of the following conditions holds 
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(a) r =  1; (b) nfllL, max ( (p j ,  u ) - a g i ) > O  
' u EcoVl j 

Then m-fold capture occurs in the game F. 

Assertion 2. Le t  V = DI(O), p~ = O,j = 1 . . . . .  r, n ~> k + m - 1 and suppose that condition (3.6) holds. 
Then m-fold capture occurs in the game F. 
2. Systems (1.1) and (1.2) have the form 

xi(O)=x o ,  xi(O)=x o,  j~i(O)=x°2, x}3)(O)=x ° (4.1) 

y ( 4 ) + 2 y ( 3 ) + ~ = u ,  ~u~<~l 

y(O)=y O, y(0)---y O, ~;(0)= y O, y3(0)=yO 

In that case 

We put 

ZI =-1 ,  k l = 2 ,  k 2 = 0 ,  k 2 = 2 ,  ~o( t )= l ,  q) l ( t )=t  

~ 2 ( t ) = ( 3 + t ) e x p ( - t ) + ( 2 t -  3), ¢P3(t)=(2 + t ) e x p ( - t ) + t -  2 

o o o 
giq = Xiq -- Yq' 

We assume that ~ ~ 0. 

f 0+2  o + _ o  
o I zii zi2 t'i3" 

zi 1 
0 0 0 

[zio - 3zi2 - 2zi3, 

z ° + 2z~ + zi°3 ~ 0 

: + + - -o  

Assertion. Le t  n >~ k + m - 1, M / =  {0} and suppose that condition (3.6) holds. 
Then m-fold capture occurs in the game F. 
3. The form of systems (1.1) and (1.2) differs from (4.1) in the absence of the second term on the left-hand sides 

of the equations of motion of pursuers and evader. In that case 

Z t =0,  k t =2,  v I =+i, m I =I ,  9 0 ( 0 = I ,  91( t )=t  

~ 2 ( t ) = l - c o s t ,  ~ 3 ( t ) = t ' s i n t  

Putting z ° = o o Xiq - y q ,  we have 

= ° +  w):2 +  3(m°3 = 

=(z  ° + )+ t<zg + z ° , ) - < :  co , + sin,) 

Let  z ° = Z°il + z°3 ~ O, Mi = {0}. 

Assertion. Let n ~> k + m - 1 and suppose that condition (3.6) holds. 
Then m-fold capture occurs in the game F. 

This  research,  which is par t  o f  the "Russian Universit ies" p r o g r a m m e  (1.5.22), was suppor ted  finan- 
cially by the Russian, Founda t ion  for  Basic Research (94-01-00843a). 
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